Electrochemical Behavior of Verapamil at Graphite–Polyurethane Composite Electrodes: Determination of Release Profiles in Pharmaceutical Samples

Felipe S. Semaan,1,2 Éder T. G. Cavalheiro,1 and Christopher M. A. Brett2

1Instituto de Química de São Carlos, University of São Paulo, São Carlos, Brazil
2Departamento de Química, Faculdade de Ciências e Tecnologia, University of Coimbra, Coimbra, Portugal

Abstract: A solid graphite–polyurethane composite electrode has been used to determine release profiles of verapamil, a calcium-channel blocker. The electro-oxidation process was characterized by cyclic voltammetry and electrochemical impedance spectroscopy and showed no adsorption of analyte or oxidation products, unlike at other carbon-based electrodes. Quantification gave linear ranges up to 40 μmol L⁻¹ with cyclic voltammetry and detection limits of 0.7 μmol L⁻¹ by differential pulse and square-wave voltammetry. Commercial product samples were successfully analyzed with results equal to those from spectrophotometry. Because no electrode surface renewal is needed, this electrode material has many advantages.

Keywords: Composite electrode, release profile, verapamil

Received 10 February 2009; accepted 23 February 2009.

Financial support from the Brazil/Portugal bilateral agreement (CAPES/FCT 177/07) and CEMUC (Research Unit 285), Portugal (FCT), is gratefully acknowledged. F. S. S. thanks CAPES for a postdoctoral grant (3183/07-6).

Address correspondence to Christopher M. A. Brett, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, 3004-535 Coimbra, Portugal. E-mail: brett@ci.uc.pt
INTRODUCTION

In recent decades, a wide group of drugs for controlling blood pressure has been developed and studied. The first group was the diuretics, followed by the beta-blockers and calcium-channel blockers. In 1964, propanolol started to be sold as Inderal, the first commercially available beta-blocker. Its success triggered a quest for similar drugs and led to the development of verapamil (Patlak 2003). Considered the first calcium-channel blocker, verapamil is widely used in its hydrochloride form and is a synthetic drug derived from papaverin, a phenylalkylamine, with important applications in Angina pectoris and hypertension (Beevers, Lip, and O’Brien 2007; Moser 2008; Jhee et al. 2005). Its structural formula is presented in Fig. 1 (C_{27}H_{38}N_{2}O_{4}·HCl, pK_a = 8.7) (Ramírez-Campos and Villafuertes-Robles 2004). This drug exists as R and S isomers, with different biological efficiencies, which does not occur with other drugs in the same category (Borges et al. 2005).

Verapamil has been determined in various matrices such as in pharmaceutical products and biological samples using different methods of detection, as briefly described here and summarized in Table 1. Such procedures include analysis in the ultraviolet-visible (UV-vis) region after derivatization (Rahman and Hoda 2002; Rahman and Azmi 2004), UV-vis spectrophotometry after chromatographic separation (Gil-Agustí et al. 2006; Venkatesh et al. 2007), fluorometry (Silva et al. 2002), chromatographic procedures (Jhee et al. 2005; Borges et al. 2005; Rambla-Alegre et al. 2005; Li et al. 2007), resonance Rayleigh scattering coupled to a flow-injection system (Xu et al. 2007), positive electron-spray ionization (Walles et al. 2002), and capillary electrophoresis (Kristoffersen et al. 2007; Capella-Perió et al. 2007).

Electroanalytical procedures have been also reported. Hassan et al. (1999) presented a miniaturized solid-state potentiometric sensor based on carboxylated polyvinyl chloride (PVC) and Nafion, reaching Nernstian response between 10^{-2} and 10^{-5} mol L^{-1}. Polymeric electrodes

![Figure 1. Structural formula of verapamil hydrochloride.](image-url)
Table 1. Analytical parameters in the literature for the determination of verapamil by different techniques

<table>
<thead>
<tr>
<th>Technique</th>
<th>Limit of detection (µmol L(^{-1}))</th>
<th>Linear range (µmol L(^{-1}))</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectrophotometry</td>
<td>—</td>
<td>0–690</td>
<td>Rahman and Azmi 2004</td>
</tr>
<tr>
<td>Spectrophotometry</td>
<td>—</td>
<td>20.4–407</td>
<td>Gil-Agustí et al. 2006</td>
</tr>
<tr>
<td>HPLC-UV</td>
<td>0.3</td>
<td>0.2–0.95</td>
<td>Venkatesh et al. 2007</td>
</tr>
<tr>
<td>HPLC-UV</td>
<td>6.7</td>
<td>22–220</td>
<td>Silva et al. 2002</td>
</tr>
<tr>
<td>Fluorimetry</td>
<td>0.082</td>
<td>—</td>
<td>Rambla-Alegre et al. 2005</td>
</tr>
<tr>
<td>Rayleigh scattering</td>
<td>0.01</td>
<td>0.04–26.5</td>
<td>Walles et al. 2005</td>
</tr>
<tr>
<td>HPLC-MS-MS</td>
<td>0.02</td>
<td>0.02–5.06</td>
<td>Ramírez-Campos and Villafuertes-Robles 2004</td>
</tr>
<tr>
<td>HPLC-MS-MS</td>
<td>—</td>
<td>0.002–1.10</td>
<td>Rahman and Hoda 2002</td>
</tr>
<tr>
<td>HPLC-MS</td>
<td>5.0 (\times) 10(^{-4})</td>
<td>0.01–1.00</td>
<td>Kristoffersen et al. 2007</td>
</tr>
<tr>
<td>HPLC-MS-MS</td>
<td>—</td>
<td>4.07–815</td>
<td>Xu et al. 2007</td>
</tr>
<tr>
<td>HPLC-MS</td>
<td>0.005</td>
<td>—</td>
<td>Capella-Peró et al. 2007</td>
</tr>
<tr>
<td>Capillary</td>
<td>0.077</td>
<td>1.10–44.0</td>
<td>Hassan et al. 1999</td>
</tr>
<tr>
<td>electrophoresis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potentiometry</td>
<td>—</td>
<td>10–10000</td>
<td>Ortúñ, Sánchez-Pedreño, and Gil 2005</td>
</tr>
<tr>
<td>Potentiometry</td>
<td>—</td>
<td>5.0–100.0</td>
<td>Ortúñ, Hernández, and Sánchez-Pedreño 2006</td>
</tr>
<tr>
<td>Potentiometry</td>
<td>—</td>
<td>10–10000</td>
<td>Aboukasim et al. 2002</td>
</tr>
<tr>
<td>Voltammetry</td>
<td>0.13</td>
<td>0.8–100</td>
<td>Demircan, Kir, and Ozkan 2007</td>
</tr>
</tbody>
</table>

Based on plasticized membranes (PVC with tetracyphenylpyridinium tetrabenzyllate) were developed by Ortúñ, Sánchez-Pedreño, and Gil (2005), which coupled the sensor to a flow system with amperometric detection. Another potentiometric electrode based on PVC, with 2-nitrophenyl octyl ether doped with tetrabutylammonium tetrabenzyllate, was also presented by Ortúñ, Hernández, and Sánchez-Pedreño (2006); the linear range was from 10\(^{-5}\) to 10\(^{-2}\) mol L\(^{-1}\).

Aboukasim et al. (2002) determined verapamil in urine and pharmaceuticals by adsorptive stripping voltammetry at a mercury electrode. Demircan, Kir, and Ozkan (2007) analyzed verapamil in pharmaceuticals and urine at a glassy carbon electrode.

Despite the large number of analytical strategies, no application to the determination of release profiles of sustained tablets was found. To optimize the rate of drug intake, thereby reducing side effects and risk of overdose, different ways of controlling the rate of drug release have been developed (Karsa and Stephenson 1994; Marvola et al. 1991; Hsieh 1993). Among these, the use of polymeric matrices and special coatings...
should be highlighted (Marvola et al. 1991). For laboratory evaluation, various dissolution procedures have been described, depending not only on the pharmaceutical dosage form to be evaluated but also on the physical and chemical properties of the drug. Examples are buffers such as phosphate, acetate, citrate, simulated gastric and intestinal fluids, surfactant solutions, acidic and alkaline solutions (such as HCl and NaOH), and even water (Azarmi, Roa, and Löbenberg 2007; Donauer and Löbenberg 2007).

The use of composite electrodes based on castor oil polyurethane as the insulating phase began in 2002, when composition, proportions, potential window, and pH range of application were assessed (Mendes, Claro-Neto, and Cavalheiro 2002). This was followed by applications such as the determination of dopamine in synthetic cerebrospinal fluid in Britton–Robinson buffer, pH 7.4 (Toledo et al. 2005); imipramine using Britton–Robinson buffer, pH 7.0 (Toledo et al. 2006); hydroquinone in photographic developers using acetate buffer, pH 4.5 (Mendes, Cervini, and Cavalheiro 2006); indole-3 acetic acid in soil using H3PO4 solution, pH 1.6 (Toledo and Vaz 2007); and atenolol in commercial samples using universal buffer, pH 10.0 (Cervini, Ramos, and Cavalheiro 2007). In all cases, the electrode was used without modification or special preparation, showing its robustness and applicability over a wide range of pH values and samples/matrices. A chemically modified polyurethane composite electrode was used as support for an oxovanadium–salen thin film for the determination of L-dopa in a flow-injection system (Teixeira et al. 2007).

The objective of this article was to develop a new electroanalytical procedure for the determination of verapamil at graphite–polyurethane composite electrodes, without the complications of adsorption, and to apply the procedure to follow the release profiles from sustainable tablets.

EXPERIMENTAL

Reagents and Solutions

Verapamil hydrochloride was obtained from Natural Pharma (Brazil) and characterized by differential scanning calorimetry (DSC Q10, TA Instruments), infrared (IR) spectroscopy (in KBr pellets using a Nicolet 5SXC Fourier transform–IR spectrophotometer), elemental analysis (C, H, and N contents was measured using a Fisons EA 1108 CNHS-O instrument), and UV spectrophotometry (Spectord S100 Carl Zeiss). According to the results, verapamil hydrochloride from Natural Pharma (Brazil) could be used as received without further purification.
A 0.0100 mol L\(^{-1}\) stock solution was prepared by direct dissolution of verapamil in water and was stored at room temperature (25 ± 1°C) for up to 1 week. Solutions of H\(_2\)SO\(_4\) (0.50 and 0.10 mol L\(^{-1}\)) and buffer supporting electrolytes of 0.10 mol L\(^{-1}\) concentration were prepared; see Table 2. Millipore Milli-Q ultrapure water was used in the preparation of all solutions, and experiments were all carried out at room temperature.

Sample Dissolution

The commercial samples consisted of Dilacoron 120-mg Retard (Abbott) tablets, for which there is no dependence between pH and release rate, according to the manufacturer. Moreover, verapamil presents good stability in water, so it was the chosen medium for dissolution and sample handling.

Dissolution and release tests were performed by dissolving an entire tablet in 500 mL of water, with constant slight stirring at room temperature; the tablet was kept suspended in a homemade open plastic holder to avoid the disruption of the tablet coating by stirring. Aliquots of 1.0 mL were taken at intervals of 1 h, up to 6 h.

Electrode Material and Preparation

The composite electrodes were prepared as described elsewhere (Mendes, Claro-Neto, and Cavalheiro 2002). Thus, castor oil polyurethane resin was prepared by mixing 0.85 parts of prepolymer A-249 and 1.0 part

Table 2. Composition of buffer solutions

<table>
<thead>
<tr>
<th>Composition</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCl + KCl</td>
<td>1.2</td>
</tr>
<tr>
<td>HCl + KCl</td>
<td>2.0</td>
</tr>
<tr>
<td>HOAc + NaOAc</td>
<td>3.3</td>
</tr>
<tr>
<td>HOAc + NaOAc</td>
<td>4.0</td>
</tr>
<tr>
<td>HOAc + NaOAc</td>
<td>5.3</td>
</tr>
<tr>
<td>Na(_2)HPO(_4) + NaH(_2)PO(_4)</td>
<td>5.8</td>
</tr>
<tr>
<td>Na(_2)HPO(_4) + NaH(_2)PO(_4)</td>
<td>6.9</td>
</tr>
<tr>
<td>Na(_2)HPO(_4) + NaH(_2)PO(_4)</td>
<td>8.0</td>
</tr>
<tr>
<td>Na(_2)B(_4)O(_7)·10H(_2)O + NaOH</td>
<td>9.3</td>
</tr>
<tr>
<td>NaOH + KCl</td>
<td>12.2</td>
</tr>
<tr>
<td>NaOH + KCl</td>
<td>13.0</td>
</tr>
</tbody>
</table>
of polyol B-471 (Poliquil, Brazil). Suitable amounts of graphite powder, 1–2\(\mu\)m in diameter (Aldrich, USA) were added to reach 60% in mass. This mixture was homogenized in a glass mortar for 15 min and then extruded as rods, which were left to cure for 24 h and then cut into 1-cm sections. Contacts were made using silver epoxy glue and copper wire, and the assembly was sealed in nonconducting resin. The surfaces were polished using abrasive paper followed by \(\alpha\)-Al\(_2\)O\(_3\) particles 1.0\(\mu\)m in diameter (Arotec, Brazil). The geometric area of the composite electrode was 0.071 cm\(^2\) (0.30 cm in diameter).

The effective active surface area was estimated by cyclic voltammetry, using 5.0 mmol L\(^{-1}\) hexacyanoferrate(II) in 0.50 mol L\(^{-1}\) KCl and different potential scan rates (10–75 mV s\(^{-1}\)). After measuring the oxidation peak current at each scan rate, Eq. (1) was used to estimate the electroactive area (Brett and Oliveira-Brett 1993):

\[
I_{pa}(A) = 2.95 \times 10^5 n^{3/2} AD^{1/2} c_\infty \nu^{1/2}
\]

in which \(n\) is number of electrons involved in the oxidation, \(A\) is the electroactive area (cm\(^2\)), \(D\) is the diffusion coefficient of hexacyanoferrate(II) in cm\(^2\) s\(^{-1}\) (7.7 \(\times\) 10\(^{-6}\) cm\(^2\) s\(^{-1}\) in 0.5 mol L\(^{-1}\) KCl (von Stackelberg, Pilgram, and Toome 1953), \(c_\infty\) the bulk concentration of hexacyanoferrate(II) in mol cm\(^{-3}\), and \(\nu\) the potential scan rate in V s\(^{-1}\). From a plot of peak current vs. scan rate, the electroactive area was found to be \(\approx 0.045\) cm\(^2\), which is 64% of the total geometric area.

Electroanalytical Procedures

A three-electrode cell with 15.0 mL of supporting electrolyte was used. The working electrode consisted of a graphite–polyurethane composite electrode, prepared as described; the reference and counterelectrodes were saturated calomel (SCE) and platinum foil (1.0 cm\(^2\)), respectively.

Voltammetric measurements were carried out using a \(\mu\)-Autolab, controlled by GPES 4.9 software (Eco-Chemie, the Netherlands). The conditions of analysis were changed depending on the experiment. All experiments were performed at room temperature.

Electrochemical impedance measurements were carried out in the same electrochemical cell with a PC-controlled Solartron 1250 frequency response analyzer coupled to a Solartron 1286 electrochemical interface using ZPlot 2.4 software (Solartron Analytical, UK); frequency scans were from 65,000 Hz to 0.1 Hz with 10 measurements per frequency decade, using a sinusoidal voltage perturbation of 10 mV rms.
Spectrophotometric Method for Comparison

A spectrophotometric procedure was used as a comparative method with those results found by electroanalytical techniques. The absorbance of verapamil solutions was measured from 200 to 400 nm using a Specord S 100 Carl Zeiss spectrophotometer. Peaks at 228 and 278 nm were used to obtain the analytical curves:

\[
228 \text{ nm: } \text{Abs} = 12711 \times [\text{VPM}] + 0.004, \quad R = 0.999, \quad n = 5 \quad (2)
\]

\[
278 \text{ nm: } \text{Abs} = 4970.5 \times [\text{VPM}] + 0.001, \quad R = 0.998, \quad n = 5 \quad (3)
\]

Linear responses were up to \(10^{-4} \text{ mol L}^{-1}\), and the limit of detection was \(3.3 \times 10^{-6} \text{ mol L}^{-1}\) for both wavelengths.

RESULTS AND DISCUSSION

Cyclic Voltammetry

The electrochemical behavior of verapamil (hydrochloride) was investigated by cyclic voltammetry in the potential range from 0.0 to +1.2 V vs. SCE, at a scan rate of 10 mV s\(^{-1}\) using \(7 \times 10^{-5} \text{ mol L}^{-1}\) verapamil in the different supporting electrolytes. Following this, a narrower potential interval from +0.5 to +1.1 V vs. SCE was used. Irreversible oxidation peaks were observed. No differences were found by changing the initial scan direction or performing deaeration.

At low pH values in sulfuric acid solutions, only a poorly defined shoulder was seen at large positive values of potential. At pH 3.3 in acetate buffer solution, a better defined peak appeared at +1.035 V vs. SCE. This peak was observed at a less negative potential with increase in pH. In acetate buffer solution at pH 5.3, a well-defined anodic peak, now at +0.883 V (of the same height as at pH 3.3), was seen, and a poorly defined shoulder at more positive potentials also appeared.

In phosphate buffer solution, pH 7.0, and at pH 8.1, the shoulder became better defined, and in the latter case a separate peak became evident at +0.699 V. Thus, in pH 9.3 Na\(_2\)B\(_4\)O\(_7\) solution, two well-defined peaks were observed, the first at +0.577 V with a higher value of peak current. However, at higher pH values, verapamil solutions were slightly turbid because the neutral form was less soluble than the acidic form (\(pK_a = 8.7\)). Our results were in agreement with those of Demircan, Kir, and Ozkan (2007): at values above pH 9.0, the peak potentials did not shift with pH, which means that there are no proton-transfer steps.
associated with the electron-transfer rate-determining step (data not shown). Illustrative cyclic voltammograms of verapamil at pH 5.3 and 9.3 are shown in Fig. 2.

In all cases, the anodic peak potential moved to less positive values when pH was increased. With the exception of pH 9.25, which exhibited the greatest peak current, all the peak currents obtained in the other media had approximately the same value. From pH 3 to 9, a linear relationship between pH and the anodic peak potential was observed (Fig. 3). The slope of the plot of E_p vs. pH of 70 mV per pH unit suggests the involvement of equal number of electrons and protons.

Analysis of the second oxidation peak in the pH range 3.3–9.3 gave a slope of 60 mV per pH unit, showing that the second oxidation step also involves equal numbers of electrons and protons.

Cyclic voltammograms were recorded at different scan rates (10, 25, 50, and 100 mV s$^{-1}$) for successive cycles in both blank and verapamil-containing solutions. The peak currents decrease after each cycle, becoming stable after five cycles. At pH 5.3, the signal became stable after the second cycle, which is unusual. In alkaline media, no signal was observed after two cycles. Further studies were therefore carried out in acetate buffer electrolyte at pH 5.3.

The influence of potential scan rate on the peak current in 7×10^{-5} mol L$^{-1}$ verapamil solutions was measured at pH 5.3. A linear relationship with the square root of scan rate obeyed the relation.

Figure 2. Cyclic voltammograms of verapamil (6.6×10^{-5} mol L$^{-1}$) in buffer electrolyte at pH 5.3 and 9.3 at a scan rate of 10 mV s$^{-1}$.

![Cyclic voltammograms of verapamil in buffer electrolyte at pH 5.3 and 9.3 at a scan rate of 10 mV s$^{-1}$](image-url)
$I_{pa} \approx 0.12 \nu^{1/2} + 0.12; \quad R = 0.999$

Mechanism of Oxidation

These observations are in agreement with the mechanism proposed by Demircan, Kir, and Ozkan (2007), based on the findings of Bermejo et al. (2000), although in these studies a glassy carbon electrode was used. Demircan, Kir, and Ozkan (2007) also observed only one peak at low pH in cyclic voltammograms of solutions containing verapamil, whereas two peaks at greater pH values were observed, as in this work. Bermejo et al. (2000) noted similar phenomena when investigating mefamamide solutions—both verapamil and mefamamide contain methoxyphenyl and tertiary amine groups in their structures—and the sequence of peaks was attributed to the oxidation of the methoxyphenyl as a single peak at low pH and another peak at low potential at higher pH, attributed to oxidation of the tertiary amine.
To evaluate possible mechanisms, the electrochemical responses for the analyte in different buffers and in differential-pulse and square-wave voltammetry experiments were conducted under the conditions described in the experimental section. Square-wave voltammetric profiles showed only the forward current and no reverse current. In both cases, the peak width at half height was approximately $W_{1/2} \sim 120 \text{mV}$. As for cyclic voltammetry, the slope of the plot of E_p vs. pH was approximately -0.060V. It was therefore deduced that both peaks correspond to irreversible processes involving one electron and one proton.

Characterization by Electrochemical Impedance Spectroscopy

The electrochemical behavior of this kind of sensor can be the result of interacting factors such as conductivity of the bulk electrode material and mass transport of electroactive substances toward the electrode and their reaction. The direct contact of neighboring conducting particles allows electrical conduction, which can be explained by percolation theory. However, the relaxation times are small compared with the timescale of electrochemical processes, so they can be considered perfect resistors (Beaunier et al. 2007). Thus, the form of the electrochemical impedance spectra reflects interfacial phenomena between the electrode and bulk solution.

For recording impedance spectra in pH 5.3 acetate buffer solution, applied potentials of $+0.6$, $+0.9$, and $+1.0 \text{V}$ vs. SCE were chosen, the first being a potential at which no electrochemical process of verapamil occurs and then other potentials related to the first oxidation peak of verapamil at $+0.9 \text{V}$ and the second at close to $+1.0 \text{V}$.

At $+0.6 \text{V}$, the spectra in electrolyte and in solutions containing verapamil showed no difference; on the other hand, at $+0.9 \text{V}$ (peak potential), a less resistive behavior of electrode in the presence of analyte was observed, returning to the initial one after the electrode was washed, which suggests that there was no permanent analyte adsorption, see Fig. 4. At $+1.0 \text{V}$, it can be seen that the presence of analyte led to irreversible changes to the surface, because after rinsing, the impedance spectrum did not return to the initial one (Fig. 4c).

These results suggest that the determination of the analyte under such conditions can be performed without surface renewal, making the procedure faster and easier than those with glassy carbon (Demircan, Kir, and Ozkan 2007).

The model used to analyze the spectra consisted of the cell resistance, R_1, in series with R_2 charge-transfer resistance in parallel with a constant-phase element (CPE), a typical equivalent circuit for composite electrodes; see Fig. 4d. Values for R_1 did not vary (38 Ω ± 0.5%), and the interfacial
capacitance (~140 μF cm⁻² s⁻⁰.¹⁶) and CPE exponent α (~0.85) are in agreement with those previously reported for composites based on nonoriented graphite Beaunier et al. 2007. The resistance R_2 decreased in value in the presence of analyte oxidation, as would be expected (Fig. 4d).

Quantitative Determination and Analytical Parameters

The analysis of verapamil was carried out using cyclic, differential-pulse, and square-wave voltammetry up to a concentration of 300 μmol L⁻¹.
Typical responses are shown in Fig. 5, and analytical parameters for all three techniques are collected in Table 3. The parameters obtained in this work are quite similar to those described by Demircan, Kir, and Ozkan (2007) for differential-pulse and square-wave voltammetry techniques at glassy carbon electrodes.

Figure 5. Electroanalysis of 6.6 μmol L\(^{-1}\) verapamil in 0.1 M acetate buffer solution, pH 5.3: Typical voltammetric profiles by cyclic voltammetry, differential-pulse voltammetry, and square-wave voltammetry using the optimized conditions described in the text.

Table 3 Analytical parameters for quantification of verapamil: limit of detection (LoD), linear range (LR), and sensitivity

<table>
<thead>
<tr>
<th>Technique</th>
<th>LoD (μmol L(^{-1}))</th>
<th>LR (μmol L(^{-1}))</th>
<th>Sensitivity (L mol(^{-1}) cm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyclic voltammetry</td>
<td>3.0</td>
<td>10–40</td>
<td>0.44</td>
</tr>
<tr>
<td>Differential-pulse voltammetry</td>
<td>0.7</td>
<td>2–30</td>
<td>2.00</td>
</tr>
<tr>
<td>Square-wave voltammetry</td>
<td>0.7</td>
<td>2–14</td>
<td>3.80</td>
</tr>
</tbody>
</table>
Cyclic Voltammetry

For quantitative determinations, the best results were obtained at a scan rate of 10 mV s\(^{-1}\) using the second cycle. Peak currents were measured from cyclic voltammograms of verapamil solutions in different concentrations of the analyte in the range 3–295 μmol L\(^{-1}\) taken at 10 mV s\(^{-1}\) scan rate in pH 5.3 acetate buffer solution, resulting in a linear range from 10 to 40 μmol L\(^{-1}\), with limits of detection and quantification of 3 and 10 μmol L\(^{-1}\), respectively. A sensitivity of 0.44 A L mol\(^{-1}\) cm\(^{-2}\) (n = 7, R = 0.9989) was found. The peak at more positive potentials was used because of its greater sensitivity.

Differential-Pulse Voltammetry

Quantification by differential-pulse voltammetry was carried out in pH 5.3 (0.2 mol L\(^{-1}\)) acetate buffer supporting electrolyte. Experiments were carried out to assess the best pulse amplitude (10, 25, 50, and 100 mV) and scan rate (10, 25, 50, and 100 mV s\(^{-1}\)) from +0.5 to +1.1 V vs. SCE with 10 μmol L\(^{-1}\) verapamil. The better relationship between sensitivity and definition of peaks was reached using 100 mV pulse amplitude and 25 mV s\(^{-1}\) scan rate: two well-defined peaks were observed. Further studies investigated the relationship between peak potential and pH. Results suggested two independent peaks, each involving one electron per proton (slope close to 0.059 V per pH unit and peak width at half height close to 120 mV).

The electrochemical response for the first peak was quantified in pH 5.3 solution using the optimized conditions in the range 0.3 to 50 μmol L\(^{-1}\). The analytical parameters are shown in Table 3.

Square-Wave Voltammetry

The square-wave parameters of frequency (10, 25, 50, and 100 Hz), step (2, 5, and 10 mV), and square-wave amplitude (10, 25, and 50 mV) were optimized. The best conditions were a step potential of 10 mV and amplitude of 50 mV at 25 Hz. The sensitivity was approximately twice that obtained by differential-pulse voltammetry (see Table 3), the result of which was to reduce the linear range to 14 μmol L\(^{-1}\) verapamil.

Analysis of Samples: Release Profiles

To evaluate the release profiles, aliquots taken from the commercial samples (after dissolution procedures and handling) were analyzed by
cyclic, differential-pulse, and square-wave voltammetry and by UV-vis spectrophotometry for comparison.

Typical release profiles are shown in Fig. 6 for three commercial samples. Complete dissolution of the white-colored coating of the tablets occurred after approximately 3 h under the conditions reported in the experimental section, exposing the nucleus and thus increasing the rate of release of the active substance. The nuclei then dissolved, and complete release of verapamil was reached after 4 h. The presence of insoluble particles of excipients, such as magnesium stearate, did not interfere with the results. Good agreement between the electroanalytical and optical procedures was observed. The slightly greater spectrophotometric response for times longer than 4 h can be attributed to absorption of inert components of the nucleus, which began to be dissolved from then onward.

CONCLUSIONS

A solid graphite–polyurethane composite electrode without chemical modification has been used for the voltammetric quantification of verapamil in commercial samples without adsorption of the analyte or its oxidation products onto the electrode surface, demonstrating its viability for repetitive determinations without need of electrode surface
regeneration or renewal. The optimized procedures were applied to the determination of the release profiles of controlled-release tablets and compared to a spectrophotometric procedure.

This composite electrode is appropriate for use not only in batch procedures but also in flow or chromatographic systems because there are no complications from electrode surface adsorption phenomena.

REFERENCES

